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What distinguishes the representations and compu-
tations of the ventral, dorsal, and lateral pathways 
of visual cortex?

Why do standard metrics of alignment to deep 
neural networks (DNN) often fail to detect these 
differences?

QUESTIONS

METHODS
Data-driven Analysis

We first applied matrix factorization to 
identify dominant components of the 
neural response in the Natural Scenes 
Dataset*, separately for the dorsal, lateral, 
and ventral pathways

Next we applied the same method to 
identify components in DNN activations

Measuring Alignment

In addition to standard alignment metrics, we 
introduce and assess Sparse Component 
Alignment, a population-level measure of 
similarity that respects the native axes of rep-
resentation

Resulting geometry is axis-sensitive 
(ie. not rotationally invariant)

How often do pairs 
of images share the 
same dominant com-
ponent (ie. axis of 
neural tuning)? Khosla et al (2024)
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*Allen et al (2022)

COMPONENT PROFILES

Qualitative examination of 
ventral, lateral, and dorsal 
components reveals a hand-
ful of differential selectivities 
with varying levels of inter-
pretability
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DISCUSSION
Dominant components distinguish representations in the ven-
tral, dorsal, and lateral pathways of visual cortex

We introduce SCA, an axis-dependent measure of representa-
tional alignment

Along a native axis of tuning, networks may be more aligned 
to the ventral than either dorsal or lateral pathways

NETWORK ALIGNMENT
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Linear Encoding 
Models
A linear readout suggests similar pre-
dictivity of visual representattions 
across all three pathways

Representational 
Similarity Analysis
Intermediate discriminability, with 
slightly higher alignment to ventral 
than either dorsal or lateral pathways

Sparse Component 
Alignment
Markedly higher alignment between 
representations of DNNs and the 
ventral pathway

BACKGROUND
Extensive evidence suggests three functionally distinct 
pathways in the human visual cortex

Measures of representational alignment fall into two categories:  stimu-
lus-by-stimulus comparisons of population-level similarity (left) and explicit 
mappings of neural dimensions (right) Sucholutsky et al (2023)

Using standard metrics of alignment, DNNs trained for 
object recognition capture responses in the three pro-
posed pathways similarly well, suggesting that they share 
a similar representational geometry

Visually guided action
Ungerleider and Mishkin (1982)

Object recognition
Ungerleider and Mishkin (1982)

Dynamic social 
perception

Pitcher and Ungerleider (2021)
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Representational Similarity Analysis
Kriegeskorte et al (2008)
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