Sparse components distinguish visual pathways & their alignment to

heural networks

BACKGROUND

Extensive evidence suggests three functionally distinct
pathways in the human visual cortex

Visually guided action
Ungerleider and Mishkin (1982)

Dynamic social ‘

perception
Pitcher and Ungerleider (2021)

Object recognition
Ungerleider and Mishkin (1982) R

yet

Using standard metrics of alignment, DNNs trained for
object recognition capture responses in the three pro-
posed pathways similarly well, suggesting that they share
a similar representational geometry
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Representational Similarity Analysis
Kriegeskorte et al (2008)

Measures of representational alignment fall into two categories: stimu-
lus-by-stimulus comparisons of population-level similarity (left) and explicit
mappings of neural dimensions (right) Sucholutsky et al (2023)

QUESTIONS

What distinguishes the representations and compu-
tations of the ventral, dorsal, and lateral pathways
of visual cortex!?

Why do standard metrics of alignhment to deep
neural networks (DNN) often fail to detect these
differences?

METHODS

Data-driven Analysis

In the manner of Khosla et al (2022) & Norman-Haignere et. al (2015)

We first applied matrix factorization to
identify dominant components of the
neural response in the Natural Scenes
Dataset’, separately for the dorsal, lateral,

and ventral pathways

Next we applied the same method to
identify components in DNN activations

*Allen et al (2022)

Ammar Marvi'4, Nancy Kanwisher'<, Meenakshi Khosla“

Measuring Alignment

In addition to standard alighment metrics, we
introduce and assess Sparse Component

Alignment, a population-level measure of
similarity that respects the native axes of rep-

resentation
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Resulting geometry Is axis-sensitive
(ie. not rotationally invariant)

Neural Space

Space

Khosla et al (2024)

Qualitative examination of
ventral, lateral, and dorsal
components reveals a hand-
ful of differential selectivities
with varying levels of inter-
pretability
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NETWORK ALIGNMENT
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DISCUSSION

Dominant components distinguish representations in the ven-
tral, dorsal, and lateral pathways of visual cortex

We introduce SCA, an axis-dependent measure of representa-
tional alighment

Along a native axis of tuning, networks may be more aligned
to the ventral than either dorsal or lateral pathways




